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By Mac C. Adams
SUMMARY

By use of an approximate equation for the wave drag of slender
bodies of revolution in a supersonic flow field, the optimum shapes of
certain boattail bodies are determined for minimum wave drag. The prop-
erties of three specific families of bodies are determined, the first
family consisting of bodies having a given length and base area.and a
contour'passing through a prescribed point between the nose and base,
the second family having fixed length, base area, and maximum area, and
the third family having given length, volume, and base area. The method
presented is easily generalized to determine minimum-wave—drég profile
shapes which have contours that must pess through any prescribed number
of points.

According to linearized theory, the optimum profiles are found to
have infinite slope at the nose but zero radius of curvature so that the
bodies appear to have pointed noses, a zero slope at the body base, and
no variation of wave drag with Mach number. For those bodies having a
specified intermediate diameter (that is, location and magnitude given),
the maximum body diameter is shown to be larger, in general, than the
specified diameter. It is also shown that, for bodies having a specified
maximum diameter, the location of the maximum diameter is not arbitrary
but is determined from the ratio of base diameter to maximum diameter.

INTRODUCTION

The wave drag of slender bodies of revolution having crogss-gsectional
areas with a zero slope at the base was shown by Von Kérman (reference 1)
to be given approximately by a double integral dependent only on the body
shape and independent of Mach number. By use of Von Kdrmén's integral
and the calculus of.variations, several authors (references 1 to 4) have
treated the problem of determining optimum body shapes to give minimum
vave drag. All these investigations have been concerned with either
closed bodies or a body, such as a shell, having its maximum thickness
at the base; however, none have treated bodies having boattails, and
this problem is considered herein.
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Ward (reference 5) has shown that bodies having a finite slope at
the base give rise to drag terms in addition to Von Karman's integral
and these additional terms include Mach number effects. The present
paper shows, however, that the optimum bodies must have a zero slope at
the base and consequently the additional terms vanish. The determination
of the minimun-wave-drag bodies of revolution with boattailing then
resolves itself to minimizing the same integral as used by the reference
papers but with a more general treatment of the body profile.

Although the analysis to follow is concerned with wave drag only,
it should be remembered that the additional drag resulting from base

pressure and skin friction is also of importance. A brief discussion
of this additional drag is given in the concluding remarks.

SYMBOIS

D wave drag

dynamic pressure of free stream

M free-stream Mach number

B=\M -1

1 body length

x, & distances made nondimensional with respect to 1/2 and

measured along body axis from midpoint of body

r(x) body radius
r(x)
S(x) nondimens ional body cross-sectional area —
» (1/2)%
A specified cross-sectional area of body divided by (1/2)2
a body diameter corresponding to area A
Smax maximum body cross-sectional area divided by (1/2)2

B body-base area divided by (1/2)2
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d meximum body diameter
. D
Cp drag coefficient —
a(1/2)78 .,
v body volume divided by (1/2)3
c | distance, divided by 1/2, from midpoint of body to loca-
tion of specified area A
e distance, divided by 1/2, from midpoint of body to loca-
tion of S,
A Lagrange multiplier
ANALYSIS

By means of linearized theory, Ward (reference 5) has shown that
the wave drag of & body of revolution in a supersonic flow field is
given approximately by

1 1 :
D 1 " "
B2, o w e
Az
1 . |
S'f{l) [l S"(x)loge‘(l - x)dx - EIE[é'(l)] 210ge _g_ S(ﬂl) (l)

where the body cross-sectional area and the coordinate distances have
been written in nondimensional form. The requirements in the derivation
of equation (1) are that the body profile have no corners (a continuous
slope) and that the rate of change of the cross-sectional area at the
nose be zero (S'(-1) = 0). .

Optimum body having given length and base area and a contour passing
through prescribed point between nose and base.- In certain practical
problems it may be desired to have a minimum-wave-drag body of revolution
which has a given length and base area and which has a contour that must
pass through a specified dilameter at a particular point between the nose
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and base of the body. Such a situation would arise, for example, if a
body of revolution were desired which would enclose some given rocket
or Jet engine.

Although the analysis to follow determines the optimum body shape
which is required to pass through three given points, that is, the nose,
the base, and some in-between point, the manner in which the analysis
could be generalized to determine optimum body shapes which must pass
through any prescribed number of points will become apparent.

Iet it be supposed that the optimum body shape is given by the
expressions :

i

' S(x) = £(x) (-1 $x S¢)

(2)

S(x) = g(x) (c £x£1)

Since the body must pass through three given points, the following condi-
tions apply:

£(-1) = 0
£(c) = gle) = A~ ‘ (3)
‘g(l) = B

The limitation of equation (1) allows no corners on the body profile;
hence,

£1(c) = g'(c) (&)

and a further condition requires that £'(-1) = O.

Next consider another body shape such that

S(x) = £(x) + dh(x) (-1 £xS¢)

S(x) = g(x) + rk(x) (c £x<€1)
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where

n(-1) = h(c) = k(c) = k(1) = h'(-1) = 0

. (6)
dh'(c) = yk'(c)

This second body profile passes through the same three prescribed points
as the optimum body profile and also satisfies the other conditions placed
on the optimum body. However, since f£(x) and g(x) define the optimm
profile, the variations in the profile, ©&h(x) and 7k(x), must neces-
.sarily produce an increased drag. It follows that h(x) and k(x) are
completely arbitrary in form and that ® and 7 are independent param-
eters. Substitution of equations (5) into equation (1) gives the drag

as g function of the two independent parameters & &and 7. If the rear
portion of the body is held fixed in its minimum-drag configuration, that
is, 7 = 0, then

oy _ o
5=0

85
- h" § d§ | f" x)loge X - g dx +

Jrl g"(x)loge|x - ¢ d%] + g'(1) sz h"(x)loge (1 - x) dx
© . " . (7

where
h(-1) = h(c) = h'(-1) = ht(c) = O

In a similar manner, the forward portion of the body can be held fixed
in its optimum-configuration, that is, & = 0, and
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1 c
= _f k"(E) dg[f £"(x)log,|x - el ax +
c 1

1 N c |
f g"(x)logelrx - 5] axj + k'(l)[f £"(x)log (1 - x) dx +

c

1 B 1
f g"(x)loge(l - x) dx| + g'(1) f k"(x)loge (1 - x) ax -
c c

g'(1)k* (1) loge 5/ELL (8)

where
k(c) = k(li =k'(c) =0

Partial integration of equatioms (7) and (8) yields

g £1(x) g'(x) _
) f_lh(g)dgdge[f_lx-gdx f ;‘Td"]“o (9)
* ° 1) ter)
‘./; k(g) dgdge[‘/:l-x———gdx-l- . -x—_—g-dx +

g'(1) Lim [k'(x)loge(1 - x)] - & (l)k'(l)loge g(l) =0
_%

(10)
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Inasmuch as h(f) is an arbitrary function, equation (9) yields directly

. l ’ ’
fc £1x) ox +fc B0 ax - app + 8, (1SESc) (1)

-1 B

Equation (10) cannot be reduced so readily but requires more considera-
tion. Since k(&) is also arbitrary, it can be chosen such that
k'(1l) = 0 of sufficient order and then

C oy 1, ’
[ 78 e [T 8 aagen Ccsisn

Now suppose that - k'(l) is not zero but instead is some finite value.
It then follows from equations (10) and (12) that g'!'(l) must be zero;
that ig, the optimum body profile must have a zZero slope at its base.
It is interesting to observe that the Mach number effect on the drag
disappears for the minimum-drag bodies.

The simultaneous solution of integral equations (11) and (12) will
now glve the optimum body profiles sought. These two equations are
identical to those found in reference 2 in which minimum-drag closed
hodies were considered.

It is recognized that equations (11) and (12) are analogous to the
integral equations found in lifting-line theory. In the analogy £'(x)
and g'(x) correspond to the vortex distribution, and the right-hand
gildes of the equations represent the induced-normal-velocity distributions
on the two-dimensional wings with no thickness. The cross-sectional area
of the optimum body 1s therefore a linear combination of the surface
potential distributions which give rise to the following normal-velocity
distributions on two-dimensional wings:
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=1 1
(a)
A
+/
>
7
v=0 4
-1 L 1
(b)
where
Cl=A3c+A1|_ C3=A10+A2
02 = A3 C)_I, = -Al

In addition, a circulatory solution is required in order that the body
have a finite base area; that is, the analogous wing has a specified
1lift.

Sketches (a) and (c) correspond to two-dimensional flat-plate wings
with deflected flaps, and sketches (b) and (d) represent flaps rotating
with a constant angular velocity. The surface-potential distributions
for the four wings, as well as the circulatory solution, are all found
in reference 6 and may be written

P(a) = C—ﬁl L\}l - ¥° cos~lc - (x - c)logelﬂ (13=)
P(p) = g% _\/l - c? \/1 -2+ (x - 2¢) \JT - cos~lc - (x - c)2loge1a

(13b)

Q
W

Pe) = 7 L\}l - x2 cos™}(-c) + (x - c)loge]' . (13¢c)
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cp(d) . Ei[ \/1 - c? \/1 - % - (x - 2¢) V1 - cos™L(-c) - (x - c?elogeN:l‘

2n
(134)

cp( ) -é-IT'-r cos™(-x) o ‘ (13e)

where

l-cx‘- \/l-cz\/l-x2
[x - ¢l

N =

and (1) represents the circulatory solution. The constants in equa-
tions (13) are determined by applying the following conditions:

St(-1) =s'(1) =0
S(c) = A )

S(1) =B

A further condition is needed to insure that the body have finite and
continuous slope at the point cj- tha.t is, C = C3

The least-drag body, which has given length and base area and which
has a contour that must pass through the point c¢ where S = A, is then
given by '

Ao Beos (o) V12 g . B V1 - X |
S(x) = |A = cos (C)](T:Q)—:‘}/E(l cx)+,T - (x-'c)+

B -1
A - —cos (-¢c) Be

B (1 - °2)2 ) ﬂ(l - c@

)é/e (x - ¢)2Logell + 3 cos1(-x)

(15)



10 ' NACA TN 2550

Some typical profiles defined by equation (15) are shovn in figure 1,
where an arbitrary thickness ratio of approximately 20 percent has been
chosen. All the profiles defined by equation (15) have infinite slope
at the nose. However, the radii of curvature approach zero at the noses
so that the noses appear to have finite angles.

For vanishing base area, equation (15) reduces to the body profiles
considered in reference 2. The optimum shell for given caliber and
length is obtained for A—)B and c—>1. The result is

s(x) = %rx Vl - X2 ¢ %vcos’l(—x)- (16)

and is in agreement with reference 1.

It should be pointed out that the maximum cross-sectional area 1s in
general not coincident with, and may be larger than, either of the
areas A or B (see fig. 1(a)). This result is contrary to two-
dimensional profiles where the maximum thickness is coincident with the
largest ordinate through which the profile is required to pass. The
neximm area of the body of revolution coincides with the point A only
when

= __\/1;°2 + cos-1(cc) | (17)

The profiles in this case give minimum wave drag for given length, base
area, and maximum area, and the area distribution is given by

s(x) = B Vi- %@+ li-if—:—slglogeN + %-cos‘l(—x) (18)

Tc Tc
1 - c2

The quantity c¢ in this equation represents the location of the maximum
diemeter and is determined, for any given ratio B/A (A = Sp,,), from

equation (17). A graph of equation (17) is shown in figure 2 and some
typical profiles defined by equations (17) and (18) (which are special
cases of equation (15)) are presented in figure 1(b). ‘




NACA TN 2550 11

The wave drag for the optimum bodies of equation (15) is easily
found to be

(19)

The drag coefficient for optimum bodies of a given length, base
area, and maximum area is then found to be

Cp==—% . (20)
D T Ac ’

o)

where A =8 .. and c is defined by equation (17). This drag coef-
ficient is shown in figure 3 plotted against B/A.

If the optimum profiles which must pass through several specified
points were sought, it follows from the present section that integral
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equations like equations (11) and (12) must be satisfied in each of the
specified regions.

Of some practical interest may be the least-drag body with a given
length and base area and which must have as a part of. its profile a
cylindrical collar of constant radius. The problem in this case reduces
to the solution for a tandem biplane configuration having the same upwash
distribution on the wing surface as in the previous problem.

Optimum body having given length, volume, and base area.- It follows
from the previous section that again the optimum bodies having given
length, volume, and base area will also have a zero slope at the base.
The calculus of variastions then gives the following integral to be made
stationary:

1
E‘LL/: f S"(x)s"(&)log.|x - E| dx 4t + )\j:l S(x) ax
(21)
with the following conditionﬁ on the body shape:
S(-1) =8 (-1) =s8'(1) =0
(1) = ' > (22)
1
Jf S(x) a&x =V
-1 v

By following a procedure similar to that used in the previous section,
the following integral equation is deduced:

1oy
flifzax=xl§2+1<2g+x3 (-1Se<1)  (23)
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Again by use of the wing analogy, the solution to equation {23) is found
in reference 6, and the constants are determined from equation (22). The
final result is

s(x) =8Y¥=3B( _ x2)3/2 +2aV1o@ e Beos ) (o)

w| o

For vanishing base area B this result reduces to the optimum body for
given length and volume as found in reference 2.

Typical body profiles as given by equation (24) are shown in fig-
ure 4. The profile shapes at the nose and base of the body can be seen
to have essentially the same character as the profiles found in the pre-
vious section.

The wave drag for those bodies having a given volume and base area
is found to be

D

)

= %EW(V _/213) + 932] (25)

The location of the maximum thickness for the bodies defined by
equation (24) is given by :

(26)

Therefore, for a given ratio V/B or a given location of maximum thick-
ness, the ratio of the base area to the maximum area is readily found.
A graph of the location of the maximum thickness ageinst B/Smax is

shown in figure 5. The wave-drag coefficients for the same values of
B,Smax are shown in figure 6. )
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CONCLUDING REMARKS

By use of an approximate equation for the wave drag of slender
bodies of revolution in a supersonic flow field, the minimum-wave-drag
body shapes have been determined for three cases: (1) the body has given
length and base area and a contour that passes through a prescribed point
between the nose and base, (2) the body has given length, base area, and
maximum area, and (3) the body has given length, base area, and volume.

The optimum body profiles are shown to have: (1) infinite slope at
the nose but zero radius of curvature so that the bodies appear to have
pointed noses, (2) a zero slope at the body base, and (3) no variation of
wave drag with Mach number. For those bodlies having a specified inter-
mediate diameter (that is, location and magnitude given) the maximum body
diameter is found to be, in generel, larger than the specified diemeter.
It was also found that, for bodies having s specified maximum diameter,
the location of the meaximum diameter is not arbitrary but 1s determined
from the ratio of base diameter to maximum diameter.

In order to find body profiles that give minimum total drag, con-
sideration must be given to skin-friction and base-pressure drag. As
for skin-friction drag, it can be said that the profile shape is of
secondary importance and that the wetted area of the body and the
Reynolds number are the primary factors.

In cases where the base pressure is independent of the body shape,
for example, where a supersonic jet exits at the base, the optimum pro-
files sought are the same as those determined herein. If no Jet exits
at the body base, the base pressure is dependent upon the body shape.
Just what the dependence is is not sufficiently clear at the present
time. However, the profiles determined may require some 8light changes
and further investigation, in which account is taken for both the wave
drag and basé-pressure drag, would be necessary.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 21, 1951




NACA TN 2550 15

REFERENCES

1. Von Kﬁrmén, Th.: The Problem of Resistance in Compressible Fluids.
R. Accad. d'Italia, Cl. Sci. Fis., Mat. e Nat., vol. XIV, 1936,
pp. 222-276. (Fifth Volta Congress held in Rome, Sept. 30 -

Oct. 6, 1935.)

2. Sears, William R.: On Projectiles of Minimum Wave Drag. Quarterly
Appl. Math., vol. IV, no. 4, Jan. 1947, pp. 361-366.

3. Haack, W.: Projectile Shapes for Smallest Wave Drag. Translation
No. A9-T-3, Contract W33-038-ac-1500%4(16351), Air Materiel Command,
U. S. Air Force, Brown Univ., 1948. (ATI translation 27736.)

4. Lighthill, M. J.: Supersonic Flow past Bodies of Revolution. R. & M.
No. 2003, British A.R.C., 1945.

5. Ward, G. N.: Supersonic Flow past Slender Pointed Bodies. Quarterly
Jour. Mech. and Appl. Math., vol. IT, pt. 1, March 1949, pp. T75-97.

6. Theodorsen, Theodore: General Theory of Aerodynamic Instability and
the Mechanism of Flutter. NACA Rep. 496, 1935.



16 ' NACA TN 2550

P L
1]
Wi e

(e]
L}

oY = 8.32

Wi ol

9.99

I~ =~

9.78

wir ool

10. 7@1

(a) Bodies having a given length and base diameter and a contour passing
through another specifically located diameter.

Figure 1.- Typical optimum body profiles defined by equation (15).
Thickness, 20 percent,
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(b) Bodies having given length, base area, and maximum area (& = Smax) -

Figure 1l.- Concluded.
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Figure 2.~ Location of maximum diameter for optimum bodies of given
length, base area, and maximum area (& = Spoy).
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Figure 3.- Wave-drag coefficient for optimum bodies of given length,
base area, and maximum area (A = Spay).
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Figure lj.~ Typical optimum body profiles which have given length, volume,
and base diameter defined by equation (2L). Thickness, 20 percent.
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Figure 5.- Location of maximum body diameter for a given ratio of base
area to maximum area for bodies of a given length, volume, and base

area,

1z

95 2 4 6 8 10
'B/Sm\ax

Figure 6.- Wave-drag coefficient for a given ratio of base area to maximum
area for bodies of a given length, volume, and base area.
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